Model Requirements

Steering Committee Presented by J. Barth

Working Group Meeting on New Standard Radiation Belt and Space Plasma Models

5 October 2004

Workshop on Radiation Belt Models

Increasing Reliance on Support Functions Provided by Space Systems

- Scientific Research
 - Space science
 - Earth science
 - Aeronautics and space transportation
 - Human exploration of space
- Navigation
- · Telecommunications
- Defense
- Space Environment Monitoring
- Terrestrial Weather Monitoring

Workshop on Radiation Belt Model

1

Why Are Radiation Models Needed?

- Primary purpose for new models
 - Spacecraft and instruments
 - Reduce risk
 - Reduce cost
 - Improve performance
 - · Increase system lifetime
 - Reduce risk to astronauts
 - · ISS
 - · Traveling through radiation belts
- Contributors to increased risk and costs
 - Resource constraints
 - Increasing complexity of space systems
 - Lack of availability of space-validated components
 - Unknowns in space environment effects mechanisms
 - Inadequate space environment models
 - · Large uncertainties in some regions
 - Environment definitions <u>do not exist</u> for some energy ranges

5 October 2004

Workshop on Radiation Belt Models

Consequences of Space Environment Effects on Systems

- · Loss of data
 - Single event upsets on flight data recorder
 - Interruption of data transmission
- · Performance degradation
 - Reduced microelectronics functionality
 - Degraded imagers
- Interference on instruments
 - Noise on imagers
 - Biasing of instrument readings
- Service outages
 - System resets, safeholds
- · Shortened mission lifetime
 - Solar array degradation, microelectronics degradation
- Loss of system or entire spacecraft
 - Catastrophic failure

5 October 2004

Workshop on Radiation Belt Models

_

Hazards for Humans

- Failure of life support systems
- Failure of space systems operational infrastructure
- The exposure received by humans from space radiation is an important occupational health risk.
 - Major concern is increased risk of cancer morbidity/mortality
 - Other possible health risks
 - Cataracts
 - Coronary disease
 - Damage to neurologic system (e.g., aging)
 - · Genetic damage to offspring
 - The probability is very small of death during or immediately following a mission due to space radiation exposure

5 October 2004

Workshop on Radiation Belt Models

NASA Approach - ALARA

- Legal, moral, and practical considerations require NASA limit astronaut radiation exposures to minimize long-term health risks
- Maintain astronauts' space radiation exposure as low as reasonably achievable (ALARA)
 - Radiation protection approach used by NASA and its International Partners
 - Assumes any radiation exposure, no matter how small, results in some finite increase in cancer risk
 - No threshold
 - Conservative approach is appropriate given the large uncertainties in the quantitative understanding of space radiation risk
 - NAS committee estimates uncertainty on the order of ± 400%

5 October 2004

Workshop on Radiation Belt Models

7

Focus of this Workshop?

New Standard Radiation Belt Models

- Identified by US Space Architect as a gap in the US Space Weather Program
- Identified by the US Space Technology Alliance's Space Environments and Effects Working Group as the #1 priority in space environments issues
- Identified in ESA R&D Roadmaps
- Why?
 - Required by engineers to build better spacecraft in <u>pre-operation</u> phases
 - Used to support operational planning and on-orbit anomaly investigations
 - Relativistic electron enhancements in belts #1 concern for astronauts on ISS (Golightly, LWS User Requirements Workshop, 2000)
 - Need improved models for safe passage of astronauts and their vehicles through the radiation belts

5 October 2004

Workshop on Radiation Belt Models

Phases of Spacecraft Development

- Mission Concept
 - Observation requirements & observation vantage points
 - Development and validation of primary technologies
- Mission Planning
 - Mission success criteria, e.g., data acquisition time line
 - Architecture trade studies, e.g., downlink budget, recorder size
 - Risk acceptance criteria include assessment of Space Weather forecasting capabilities
- Design
 - Component screening, redundancy, shielding requirements, grounding, error detection and correction methods
- Launch & Operations
 - Asset protection
 - · Shut down systems
 - Avoid risky operations, such as, maneuvers, system reconfiguration, data download, or re-entry
 - Anomaly Resolution
 - . Lessons learned need to be applied to all phases

5 October 2004

Workshop on Radiation Belt Models

Space Environment Definitions

Space Weather

"conditions on the sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and can endanger human life or health"

[US National Space Weather Program]

<Space> Climate

 "The historical record and description of average daily and seasonal <Space> weather events that help describe a region. Statistics are usually drawn over several decades."

[Dave Schwartz the Weatherman – Weather.com]

5 October 2004

Workshop on Radiation Belt Models

11

Hazards to Astronauts on ISS Golightly – AMS 2004 • Space weather can significantly enhance the ambient "space radiation" environment, increasing the exposure of humans in space Outer Electron Belt Enhancement (EVA only) SPE: protons, heavy ions (e.g., Fe) Additional Radiation Belts: protons, high energy electrons?

Space Weather vs. Climatology What are the Impacts? Golightly - AMS 2004 **Space Weather Space Climatology** 4 to 6 orders of magnitude Factor of 2 to 3 modulation increase in near-Earth proton flux in GCR flux Factor of 2 to ~100 increase in Factor of 2 modulation in outer belt electron flux trapped proton flux Decreased geomagnetic shielding (shielding against interplanetary charged particles) Additional trapped radiation belts

"Plasma" Model Requirements

- Required for surface charging and surface erosion predictions
- Charging
 - Electrons models for 1 < E <100 keV
 - Better definition in MEO regions
- Surface degradation
 - Protons energies "as low as possible"
 - 50 eV to 100 keV
 - · Information on ion species
 - Electron energies
 - 50 eV to 40 keV
 - Statistics on range of environment fluxes

5 October 2004

Workshop on Radiation Belt Models

17

Trapped Proton Model Requirements

- Required for total dose, displacement damage, and single events effects predictions
- Improved time resolution
 - AP8 has 4- and 6-year averages
 - Represent long-term variation over the solar cycle with at least 6month resolution
- Broad energy range
 - 0.1 < E < 1.0 MeV Surface effects
 - 1 < E < 10 MeV Solar cell degradation
 - 10 < E < 100 MeV Total dose, dose rate, single events effects
 - E > 100 MeV Total dose, dose rate behind shielding, detector damage
- · Statistical description of variations
 - Provide worst case estimates
 - Provide confidence levels
 - **Definition of transient belts**
 - How often do they appear?
 - How intense are they?
 - How long do they last?
 - What are the highest energies observed?
 - What is the heavy ion content?

5 October 2004

Workshop on Radiation Belt Models

Trapped Electron Model Requirements

- Required for total dose and internal charging predictions
- Improved time resolution
 - AE8 has 4- and 6-year averages
 - Represent long-term variation over the solar cycle with at least 6-month resolution
- · Broad energy range
 - 0.1 < E < 1.0 MeV Surface effects
 - 1 < E < 30 MeV Internal charging, Total dose
- Statistical description of variations
 - Provide worst case estimates
 - Provide confidence levels
- · Definition of transient belts
 - How often do they appear?
 - How intense are they?
 - How long do they last?
 - What are the highest energies observed?

5 October 2004

Workshop on Radiation Belt Models

15

Dataset Management & Model Standardization

- Needs to be a cooperative effort
 - International
 - "Impartial" modeling center
- Needs long-term commitment
- Standardization options AIAA, IEEE, and ISO
- Need to break through the funding "Catch-22"
 - Radiation Belt modeling is not considered a science activity, but ...
 - Experimental space scientists must be a significant part of the modeling effort

5 October 2004

Workshop on Radiation Belt Models